Abstract

BackgroundIn some cases, a dentist cannot solve the difficulties a patient has with an implant because the implant system is unknown. Therefore, there is a need for a system for identifying the implant system of a patient from limited data that does not depend on the dentist’s knowledge and experience. The purpose of this study was to identify dental implant systems using a deep learning method.MethodsA dataset of 1282 panoramic radiograph images with implants were used for deep learning. An object detection algorithm (Yolov3) was used to identify the six implant systems by three manufactures. To implement the algorithm, TensorFlow and Keras deep-learning libraries were used. After training was complete, the true positive (TP) ratio and average precision (AP) of each implant system as well as the mean AP (mAP), and mean intersection over union (mIoU) were calculated to evaluate the performance of the model.ResultsThe number of each implant system varied from 240 to 1919. The TP ratio and AP of each implant system varied from 0.50 to 0.82 and from 0.51 to 0.85, respectively. The mAP and mIoU of this model were 0.71 and 0.72, respectively.ConclusionsThe results of this study suggest that implants can be identified from panoramic radiographic images using deep learning-based object detection. This identification system could help dentists as well as patients suffering from implant problems. However, more images of other implant systems will be necessary to increase the learning performance to apply this system in clinical practice.

Highlights

  • In some cases, a dentist cannot solve the difficulties a patient has with an implant because the implant system is unknown

  • Because more than 30 years have passed since implants were introduced into clinical practice, various implant problems have been reported, such as complications in the

  • The purpose of this study is to develop an automated system for identifying implant systems using a deep learning-based object detection method

Read more

Summary

Introduction

A dentist cannot solve the difficulties a patient has with an implant because the implant system is unknown. Dental implants were developed in the 1980s [1], and they are used for patients with missing teeth globally. Their effect on dental treatment is great, and various improvements in patients’ quality of life have been reported [2, 3]. There is a need for a system for identifying the implant system of a patient from limited data that does not depend on the dentist’s knowledge and experience

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.