Abstract
To assess the role of Machine Learning (ML) in identification critical factors of dementia and mild cognitive impairment. 371 elderly individuals were ultimately included in the ML analysis. Demographic information (including gender, age, parity, visual acuity, auditory function, mobility, and medication history) and 35 features from 10 assessment scales were used for modeling. Five machine learning classifiers were used for evaluation, employing a procedure involving feature extraction, selection, model training, and performance assessment to identify key indicative factors. The Random Forest model, after data preprocessing, Information Gain, and Meta-analysis, utilized three training features and four meta-features, achieving an area under the curve of 0.961 and a accuracy of 0.894, showcasing exceptional accuracy for the identification of dementia and mild cognitive impairment. ML serves as a identification tool for dementia and mild cognitive impairment. Using Information Gain and Meta-feature analysis, Clinical Dementia Rating (CDR) and Neuropsychiatric Inventory (NPI) scale information emerged as crucial for training the Random Forest model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of Alzheimer's disease and other dementias
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.