Abstract

Phagocytosis is a complex and apparently evolutionarily conserved process that plays a central role in the immune response to infection. By ultrastructural and functional criteria, Drosophila hemocyte (macrophage) phagocytosis resembles mammalian phagocytosis. Using a non-saturated forward genetic screen for larval hemocyte phagocytosis mutants, D-SCAR and profilin were identified as important regulators of phagocytosis in Drosophila. In both hemocytes ex vivo and the macrophage-like S2 cell line, lack of D-SCAR significantly decreased phagocytosis of Escherichia coli and Staphylococcus aureus. In contrast, profilin mutant hemocytes exhibited increased phagocytic activity. Analysis of double mutants suggests that D-SCAR and profilin interact during phagocytosis. Finally, RNA interference studies in S2 cells indicated that the D-SCAR homolog D-WASp also participates in phagocytosis. This study demonstrates that Drosophila provides a viable model system in which to dissect the complex interactions that regulate phagocytosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call