Abstract

1. In vitro studies identified the hepatic cytochrome P450 (CYP) enzyme(s) involved in the major metabolism of ecabapide in human. 2. Ecabapide mainly underwent N-dealkylation to form M1 and 6-hydroxylation of the benzamide moiety to form M6. 3. The rates of formation of the major metabolites M1 and M6 were significantly correlated with CYP3A-selective testosterone 6beta-hydroxylase activities in 14 different human liver microsomes. The formation of both metabolites was markedly decreased by ketoconazole, miconazole or troleandomycin (TAO), CYP3A-selective inhibitors, and also was inhibited by anti-CYP3A antibodies. 4. These results strongly indicate that CYP3A is the predominant isozyme responsible for the major metabolism of ecabapide in human liver microsomes. 5. Marginal inhibition of the formation of M1 and M6 by nifedipine, a substrate of CYP3A with a Ki>100 muM, suggested that nifedipne has a limited potential to inhibit the major metabolic pathways of ecabapide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call