Abstract
There is growing evidence that the amino-terminal globular domain of apolipoprotein B (apoB) is essential for lipoprotein particle formation in the hepatic endoplasmic reticulum. To identify the structural requirements for its function in lipoprotein assembly, cysteine (Cys) pairs required to form the seven disulfide bonds within the amino-terminal 21% of apoB were replaced in groups or individually by serine. Substitution of Cys pairs required for formation of disulfide bonds 1-3 or 4-7 (numbered from amino to carboxyl terminus) completely blocked the secretion of apoB28 in transfected HepG2 cells. To identify the specific disulfide bonds required for secretion, Cys pairs were mutated individually. Substitution of Cys pairs required for disulfide bonds 1, 3, 5, 6, or 7 had little or no impact on apoB28 secretion or buoyant density. In contrast, individual substitution of Cys pair 2 (amino acid residues 51 and 70) or 4 (218 and 234) severely inhibited apoB28 secretion and its capacity to undergo intracellular assembly with lipid. The same assembly and secretion defects were observed when these mutations were expressed as part of apoB50. These studies provide direct evidence that the ability of the internal lipophilic regions of apoB to engage in the recruitment and sequestration of lipid during translation is critically dependent upon a structural configuration contained within or affected by the amino-terminal 5% of the protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.