Abstract

Identification of short, structured peptides able to mimic potently protein-protein interfaces remains a challenge in drug discovery. We report here the use of a naive cyclic peptide phage display library to identify peptide ligands able to recognize and mimic IgG1-Fc functions with FcγRI. Selection by competing off binders to FcγRI with IgG1 allowed the isolation of a family of peptides sharing the common consensus sequence TX2CXXθPXLLGCΦXE (θ represents a hydrophobic residue, Φ is usually an acidic residue, and X is any residue) and able to inhibit IgG1 binding to FcγRI. In soluble form, these peptides antagonize superoxide generation mediated by IgG1. In complexed form, they trigger phagocytosis and a superoxide burst. Unlike IgG, these peptides are strictly FcγRI-specific among the FcγRs. Molecular modeling studies suggest that these peptides can adopt 2 distinct and complementary conformers, each able to mimic the discontinuous interface contacts constituted by the Cγ2-A and -B chains of Fc for FcγRI. In addition, by covalent homodimerization, we engineered a synthetic bivalent 37-mer peptide that retains the ability to trigger effector functions. We demonstrate here that it is feasible to maintain IgG-Fc function within a small structured peptide. These peptides represent a new format for modulation of effector functions.—Bonetto, S., Spadola, L., Buchanan, A. G., Jermutus, L. Lund, J. Identification of cyclic peptides able to mimic the functional epitope of IgG1-Fc for human FcγRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call