Abstract

BackgroundDilated cardiomyopathy (DCM) is a leading cause of heart failure. Cuproptosis is involved in various diseases, although its role in DCM is still unclear. Here, this study aims to investigate the feasibility of using genes related to cuproptosis as diagnostic biomarkers for DCM and the association of their expression with immune infiltration and drug target in cardiac tissue. MethodsGene expression data from nonfailure (NF) and DCM samples were retrieved from the GEO database. Cuproptosis scores were calculated using single-sample gene set enrichment analysis (ssGSEA). Weighted gene co-expression network analysis (WGCNA) was used to screen key modules associated with DCM and cuproptosis. Random forest and least absolute shrinkage and selection operator (LASSO) were applied to identify signature genes. Finally, immune cell infiltration was assessed using ssGSEA. mRNA-miRNA-lncRNA regulatory networks and chemical-drug regulatory networks based on signature genes were analyzed by Cytoscape. Results8 modules were aggregated by WGCNA, among which MEblue was significantly associated with cuproptosis scores and DCM. A diagnostic model made up of six signature genes including SEPTIN1, CLEC11A, ISG15, P3H3, SDSL, and INKA1 was selected. Furthermore, immune infiltration studies showed significant differences between DCM and NF. Drugs networks and ceRNA regulatory network based on six signature genes were successfully constructed. ConclusionSix signature genes (SEPTIN1, CLEC11A, ISG15, P3H3, SDSL, and INKA1) were identified as novel diagnostic biomarkers in DCM. In addition, the expression of these genes was associated with immune cell infiltration, suggesting that cuproptosis may be involved in the immune regulation of DCM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call