Abstract
Opting for NO as an N source in electrocatalytic NH3 synthesis presents an intriguing approach to tackle energy and environmental challenges. However, blindly pursuing high NH3 synthesis rates and Faradaic efficiency (FE) while ignoring the NO conversion ratio could result in environmental problems. Herein, Cu nanosheets with exposed (111) surface is fabricated and exhibit a NO-to-NH3 yield rate of 371.89 μmol cm-2 h-1 (flow cell) and the highest FE of 93.19±1.99 % (H-type cell). The NO conversion ratio is increased to the current highest value of 63.74 % combined with the development of the flow cell. Additionally, Crystal Orbital Hamilton Population (COHP) clearly reveals that the "σ-π* acceptance-donation" is the essence of the interaction between the Cu and NO as also supported by operando attenuated total reflection infrared spectroscopy (ATR-IRAS) in observing the key intermediate of NO- . This work not only achieves a milestone NO conversion ratio for electrocatalytic NO-to-NH3 , but also proposes a new descriptor that utilizes orbital hybridization between molecules and metal centers to accurately identify the real active sites of catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.