Abstract

The majority of the currently defined tumor-associated Ags are often overexpressed products of normal cellular genes. Therefore, tolerance deletes high-affinity T cells directed against the TAAs, leaving only a low-affinity repertoire. We have demonstrated previously that the T cell repertoire against the immunodominant p773-782 A2.1-Her-2/neu-restricted peptide has low affinity in A2xneu mice (Her-2/neu mice crossed with A2.1/Kb mice), compared with A2xFVB mice (A2.1/Kb crossed with FVB-wild-type mice). Immunizations with this peptide have a minor impact in preventing tumor growth in A2xneu mice. Therefore, attempts to expand these responses may be of little clinical value. We hypothesized that if not all possible cross-reactive peptides (CPs) are naturally processed and presented, the possibility exists that T cells against these CPs persist in the repertoire and can be used to induce antitumor responses with higher avidity against native epitopes present on the tumor cells. We have used the positional scanning synthetic peptide combinatorial library methodology to screen the p773-782 T cell clone. The screening data identified potential amino acids that can be substituted in the primary sequences of the p773-782 peptide. The designed CPs induce CTL responses of higher affinity in A2xneu mice compared with the native p773-783 peptide. These CTLs recognize A2+-Her-2/neu(+) tumors with high efficiency. Moreover, multiple immunizations with CPs significantly prolonged the survival of tumor-bearing A2xneu mice. These results have demonstrated that it was possible to circumvent tolerance with the identification of CPs and that these peptides could be of significant clinical value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call