Abstract

Nuclear receptors regulate transcription by binding to specific DNA response elements as homodimers or heterodimers with the retinoid X receptors (RXRs). The identity box (I-box), a 40-amino acid region within the ligand-binding domains of RXRs and other nuclear receptors, was recently shown to determine identity in the heterodimeric interactions. Here, we dissected this region in the yeast two-hybrid system by analyzing a series of chimeric receptors between human RXRalpha and rat hepatocyte nuclear factor 4 (HNF4), a distinct member of the nuclear receptor superfamily that prefers homodimerization. We found that the C-terminal 11-amino acid region of the RXR I-box was sufficient to direct chimeric receptors based on the HNF4 ligand-binding domain to heterodimerize with retinoic acid receptors or thyroid hormone receptors. Furthermore, we identified the hRXRalpha amino acids A416 and R421 of the 11-amino acid subregion as most critical determinants of heterodimeric interactions; i.e. mutant HNF4s incorporating only the hRXRalpha A416 or R421 heterodimerized with retinoic acid receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.