Abstract

ABSTRACTWe tested the hypothesis that critical intensity in cycling can be determined from a single delta blood lactate in the third minute of a submaximal cycle ergometer trial. Fourteen healthy young men performed four to six constant-power-output trials on a cycle ergometer to the limit of tolerance. Critical intensity was calculated via a linear model and subsequently validated. Lactate was measured at baseline and at 3 min from exercise onset. Delta lactate was the difference between these measures. Based on individual trials, we obtained the delta lactate–% validated critical intensity relationship and thereafter an estimate of critical intensity was computed. Validated and estimated critical intensity were compared by effects sizes, paired-sample t-test and Bland–Altman analysis. Delta lactate was a linear function of the intensity of exercise, expressed as % validated critical intensity (R2 = 0.89). Estimated critical intensity was not different from (d = 0.03, P = 0.98) and highly correlated with (R2 = 0.88) validated critical intensity. The bias between measures was 0.03 W (≠0) with a precision of 7 W. The results suggest that critical intensity in cycling can be accurately and precisely determined from delta lactate during a sub-maximal trial and so provides a practical and valid alternative to direct determination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.