Abstract

The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 Å crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix α10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.

Highlights

  • Nuclear receptors (NRs) are ligand-inducible transcription factors that transmit physiological signals of a wide variety of ligands, such as classical steroid hormones, retinoic acid, thyroid hormone, and vitamin D [1,2]

  • The ligands are unknown for a subset of ‘‘orphan’’ nuclear receptors, including the chicken ovalbumin promoter-transcription factors (COUP-TFI and II, and EAR2)

  • We demonstrate that COUP-TFII is a ligand-regulated nuclear receptor that can be activated by unphysiological micromolar concentrations of retinoic acids

Read more

Summary

Introduction

Nuclear receptors (NRs) are ligand-inducible transcription factors that transmit physiological signals of a wide variety of ligands, such as classical steroid hormones, retinoic acid, thyroid hormone, and vitamin D [1,2]. Among the most extensively studied orphan receptors are the chicken ovalbumin upstream promoter-transcription factors (COUP-TFs), which belong to the NR2F subfamily. This family includes three human members—COUP-TFI (EAR3), COUP-TFII (ARP-1), and the more distant EAR2—as well as the Drosophila melanogaster protein Seven-up (Svp), xCOUP-TFIII from Xenopus laevis, and the zebrafish homolog SVP46 [4,5]. The LBDs of COUP-TFI or II are essentially identical in different species (99.6% among vertebrates and .90% with the D. melanogaster protein Svp), suggesting that these domains are critical for the biological function of COUP-TFs even though a ligand has yet to be identified [4]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call