Abstract

Bovine mastitis remains the most economically important disease in dairy cows. Corynebacterium bovis, a lipid-requiring Corynebacterium spp., is frequently isolated from the milk of infected mammary glands of dairy cows and is associated with reduced milk production. A total of 212 coryneform bacteria isolated from the milk of dairy cows were obtained from mastitis reference laboratories in the United States and Canada. All isolates had been presumptively identified as Corynebacterium bovis based on colony morphology and growth in the presence of butterfat. Preliminary identification of the isolates was based on Gram stain, oxidase, catalase, and growth on unsupplemented trypticase soy agar (TSA), TSA supplemented with 5% sheep blood, and TSA supplemented with 1% Tween 80. Of the 212 isolates tested, 183 were identified as Corynebacterium spp. based on preliminary characteristics. Of the strains misidentified, one was identified as a yeast, two as Bacillus spp., 11 as Enterobacteriaceae, 18 as staphylococci, one as a Streptococcus spp., and one as an Enterococcus spp. Eighty-seven coryneforms were selected for identification to the species level by direct sequencing of the 16S rRNA gene, the Biolog system and the API Coryne system. Fifty strains were identified as C. bovis by 16S rRNA gene similarity studies: the Biolog and API Coryne systems correctly identified 54.0 and 88.0% of these strains, respectively. The other coryneforms were identified as other Corynebacterium spp., Rhodococcus spp., or Microbacterium spp. These data indicate that the coryneform bacteria isolated from bovine mammary glands are a heterogeneous group of organisms. Routine identification of C. bovis should include Gram-stain, cell morphology, catalase production, nitrate reduction, stimulated growth on 1% Tween 80 supplemented media, and β-galactosidase production as the minimum requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.