Abstract
Statistical machine learning has developed into integral components of contemporary scientific methodology. This integration provides automated procedures for predicting phenomena, case diagnosis, or object identification based on previous observations, uncovering patterns underlying data, and providing insights into the problem. Identification of corn plant diseases and pests using it has become popular recently. Corn (Zea mays L) is one of the essential carbohydrate-producing foodstuffs besides wheat and rice. Corn plants are sensitive to pests and diseases, resulting in a decrease in the quantity and quality of the production. Eradicate pests and diseases according to their type is a solution to overcome the problem of disease in corn plants. This research aims to identify corn plant diseases and pests based on the digital image using the Multinomial Naïve Bayes and K-Nearest Neighbor methods. The data used consisted of 761 digital images with six classes of corn plants disease and pest. The investigation shows that the K-Nearest Neighbor method has a better predictive performance than the Multinomial Naïve Bayes (MNB) method. The MNB method with two categories has an accuracy level of 92.72%, a precision level of 79.88%, a recall level of 79.24%, F1-score 78.17%, kappa 72.44%, and AUC 71.91%. Simultaneously, the K-Nearest Neighbor approach with k=3 has an accuracy of 99.54 %, a precision of 88.57%, recall 94.38%, F1-score 93.59%, kappa 94.30%, and AUC 95.45%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.