Abstract

Low back pain, knee osteoarthritis, and cancer patients suffer from chronic pain. Aberrant nerve growth into intervertebral disc, knee, and tumors, are common pathologies that lead to these chronic pain conditions. Axonal dieback induced by capsaicin (Caps) denervation has been FDA-approved to treat painful neuropathies and knee osteoarthritis but with short-term efficacy and discomfort. Herein, we propose to evaluate pyridoxine (Pyr), vincristine sulfate (Vcr) and ionomycin (Imy) as axonal dieback compounds for denervation with potential to alleviate pain. Previous literature suggests Pyr, Vcr, and Imy can cause undesired axonal degeneration, but no previous work has evaluated axonal dieback and cytotoxicity on adult rat dorsal root ganglia (DRG) explants. Thus, we performed axonal dieback screening using adult rat DRG explants in vitro with Caps as a positive control and assessed cytotoxicity. Imy inhibited axonal outgrowth and slowed axonal dieback, while Pyr and Vcr at high concentrations produced significant reduction in axon length and robust axonal dieback within three days. DRGs treated with Caps, Vcr, or Imy had increased DRG cytotoxicity compared to matched controls, but overall cytotoxicity was minimal and at least 88% lower compared to lysed DRGs. Pyr did not lead to any DRG cytotoxicity. Further, neither Pyr nor Vcr triggered intervertebral disc cell death or affected cellular metabolic activity after three days of incubation in vitro. Overall, our findings suggest Pyr and Vcr are not toxic to DRGs and intervertebral disc cells, and there is potential for repurposing these compounds for axonal dieback compounds to cause local denervation and alleviate pain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call