Abstract
The MLL gene at chromosome 11, band q23, is involved in translocations with as many as 40 different chromosomal bands. Virtually all breakpoints occur within an 8.3 kb BamHI fragment and result in 5` MLL fused to partner genes in a 5′-3′ orientation. The translocation t(9;11)(p22;q23), which results in the fusion of MLL to AF9, is the most common of the 11q23 chromosomal abnormalities observed in de novo acute myeloid leukemia (AML), in therapy related leukemia (t-AML), and rarely in acute lymphoblastic leukemia (ALL). We have studied 24 patients with a t(9;11) and an MLL rearrangement, including 19 patients with AML, four with t-AML, and one with ALL. To understand the mechanisms of this illegitimate recombination, we cloned and sequenced the t(9;11) translocation breakpoint junctions on both derivative chromosomes from one AML patient and from the Mono Mac 6 (MM6) cell line, which was derived from a patient with AML. Two different complex junctions were noted. In the AML patient, both chromosome 11 and 9 breaks were staggered, occurred in Alu DNA sequences, and resulted in a 331 bp duplication. In the MM6 cell line, breaks in chromosomes 11 and 9 were also staggered, but, in contrast to the finding in the AML patient, the breaks did not involve Alu DNA sequences and resulted in a 664 bp deletion at the breakpoints. Using reverse transcriptase (RT-) PCR, we analyzed 11 patient samples, including the two just described, for MLL-AF9 fusions. The fusion occurred in six of seven AML patients, two of two t-AML patients, one patient with ALL, and in the MM6 cell line. Interestingly, all of the breaks within the AF9 gene in AML patients occurred in the central AF9 exon, called Site A by others, whereas in the single ALL patient the breakpoint mapped to a more 3` region of the AF9 gene. Our data, when combined with those of others, suggest that the fusion point within the AF9 gene, and thus the amount of AF9 material included in the MLL-AF9 fusion gene product, may influence the phenotype of the resulting leukemia. This further supports the proposal that the MLL translocation partner genes play a critical role in the leukemogenic process. Genes Chromosomes Cancer 20:185–195, 1997. © 1997 Wiley-Liss, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.