Abstract

We previously reported that microRNA (miR)23a and miR30b are selectively sorted into exosomes derived from rickettsia-infected endothelial cells (R-ECExos). Yet, the mechanism remains unknown. Cases of spotted fever rickettsioses have been increasing, and infections with these bacteria cause life-threatening diseases by targeting brain and lung tissues. Therefore, the goal of the present study is to further dissect the molecular mechanism underlying R-ECExos-induced barrier dysfunction of normal recipient microvascular endothelial cells (MECs), depending on their exosomal RNA cargos. Infected ticks transmit the rickettsiae to human hosts following a bite and injections of the bacteria into the skin. In the present study, we demonstrate that treatment with R-ECExos, which were derived from spotted fever group R parkeri infected human dermal MECs, induced disruptions of the paracellular adherens junctional protein VE-cadherin, and breached the paracellular barrier function in recipient pulmonary MECs (PMECs) in an exosomal RNA-dependent manner. We did not detect different levels of miRs in parent dermal MECs following rickettsial infections. However, we demonstrated that the microvasculopathy-relevant miR23a-27a-24 cluster and miR30b are selectively enriched in R-ECExos. Bioinformatic analysis revealed that common sequence motifs are shared exclusively among the exosomal, selectively-enriched miR23a cluster and miR30b at different levels. Taken together, these data warrant further functional identification and characterization of a monopartition, bipartition, or tripartition among ACA, UCA, and CAG motifs that guide recognition of microvasculopathy-relevant miR23a-27a-24 and miR30b, and subsequently results in their selective enrichments in R-ECExos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call