Abstract
Accurate prediction of genes in genomes has always been a challenging task for bioinformaticians and computational biologists. The discovery of existence of distinct scaling relations in coding and non-coding sequences has led to new perspectives in the understanding of the DNA sequences. This has motivated us to exploit the differences in the local singularity distributions for characterization and classification of coding and non-coding sequences. The local singularity density distribution in the coding and non-coding sequences of four genomes was first estimated using the wavelet transform modulus maxima methodology. Support vector machines classifier was then trained with the extracted features. The trained classifier is able to provide an average test accuracy of 97.7%. The local singularity features in a DNA sequence can be exploited for successful identification of coding and non-coding sequences. Available on request from bd.kulkarni@ncl.res.in.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.