Abstract

Parkinson's disease (PD) is a neurodegenerative disease. Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic tool in PD. High-throughput sequencing was performed to screen potential therapeutic targets in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. The candidate gene, Clec7a, was screened out and validated. Clec7a is a pattern recognition receptor involved in neuroinflammation. The higher expression of Clec7a was observed in the substantia nigra (SN) and striatum of PD rats with dopaminergic neurons damage and was mainly localized in the microglial. Adeno-associated virus (AAV)-mediated specific knockdown of Clec7a in microglial alleviated 6-OHDA induced motor deficits and nigrostriatal dopaminergic neuron damage of rats, as evidenced by the increase of tyrosine hydroxylase (TH) -positive neurons in SN, as well as dopaminergic nerve fibers in the striatum. Clec7a knockdown restrained the neuroinflammation by suppressing inflammatory factors (IFN-γ, TNF-α, IL-1β, IL-18, and IL-6) release in SN, which might result from enhanced Arg-1 expression (M2 polarization) and defective inducible nitric oxide synthase (iNOS) expression (M1 polarization). The same phenomena were also observed in the LPS inflammatory rat model of PD. In vitro, α-synuclein fibrils induced upregulation of Clec7a expression and microglia polarization to a pro-inflammatory state of BV2 cells, leading to increased release of cytokines. However, Clec7a knockdown reversed those changes and induced a shift to an anti-inflammatory phenotype in BV2 cells. In conclusion, our study suggested that Clec7a was involved in PD pathogenesis, and its inhibition might protect rats from PD by depressing neuroinflammation through microglial polarization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call