Abstract

The temporal order of DNA replication (replication timing, RT) is highly coupled with genome architecture, but cis-elements regulating spatio-temporal control of replicatio have remained elusive. We performed an extensive series of CRISPR mediated deletions and inversions and high-resolution capture Hi-C of a pluripotency associated domain (DppA2/4) in mouse embryonic stem cells. Whereas CTCF mediated loops and chromatin domain boundaries were dispensable, deletion of three intra-domain prominent CTCF-independent 3D contact sites caused a domain-wide delay in RT, shift in sub-nuclear chromatin compartment and loss of transcriptional activity, These “early replication control elements” (ERCEs) display prominent chromatin features resembling enhancers/promoters and individual and pair-wise deletions of the ERCEs confirmed their partial redundancy and interdependency in controlling domain-wide RT and transcription. Our results demonstrate that discrete cis-regulatory elements mediate domain-wide RT, chromatin compartmentalization, and transcription, representing a major advance in dissecting the relationship between genome structure and function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.