Abstract
Circular RNAs (circRNAs), which are involved in the development of diseases by regulating gene expression, have become promising novel biomarkers for diseases. The aim of the present study was to identify the circulating circRNA biomarkers for early detection of type 2 diabetes (T2D). The circRNA expression profiles were screened by microarray and compared between 5 new T2D cases and 5 healthy controls. The expression of candidate circRNAs that may be involved in the insulin phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway were validated by RT-qPCR in a second sample with 30 T2D cases and 30 controls. The association between circRNAs and T2D and their clinical significances were further assessed by logistic regression model, correlation analysis, and ROC curve in a large cohort comprising 313 subjects. The microRNA (miRNA) targets of circRNAs were verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Low expressed circ_0063425 and hsa_circ_0056891 were independent predictors of T2D, impaired fasting glucose (IFG), and insulin resistance. The 2-circRNA panel had a high diagnostic accuracy for discriminating T2D and IFG from healthy controls, especially when body mass index was integrated. miR-19a-3p and miR-1-3p were identified as the miRNA targets of hsa_circ_0063425 and hsa_circ_0056891, respectively. Significant positive correlations were found between the expression levels of AKT and hsa_circ_0063425, PI3K and hsa_circ_0056891, in the total sample and subgroups stratified by glucose levels. Downregulated hsa_circ_0063425 and hsa_circ_0056891 might contribute to the pathogenesis of T2D. They are valuable circulating biomarkers for early detection of T2D, which may be involved in regulation of PI3K/AKT signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of clinical endocrinology and metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.