7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1186/s43042-024-00527-0
Copy DOIPublication Date: May 11, 2024 | |
License type: CC BY 4.0 |
BackgroundAutism spectrum disorder (ASD) is a complex neurological disability with multifactorial etiology. ASD is described by behavior, speech, language, and communication defects. CircRNA is a type of ceRNA that plays an important role in modulating microRNAs (miRNA) in several disorders. However, the potential role of the circRNA/miRNA/mRNA regulatory network in the pathogenesis of ASD is not fully understood. Therefore, this study aimed to create a circRNA/miRNA/mRNA network associated with ASD to cast light on the pathogenesis of ASD.MethodsCircRNA expression profile data were recruited from Gene Expression Omnibus datasets, and the differentially expressed circRNAs (DEcircRNAs) were identified. Then, miRNAs modulated by these circRNAs were predicted and overlapped with differentially expressed miRNAs. Next, the potentially involved genes were identified by overlapping predicted targets, and differentially expressed genes. The enrichment analysis was performed, and a PPI network was projected. Subsequently, ten key genes were selected from the network. Furthermore, a circRNA/miRNA/mRNA regulatory network was constructed, and probable molecules and drugs with potential anti-ASD effects were predicted.Results11 DEcircRNAs and 8 miRNAs regulated by 4 circRNAs were identified as being significantly involved. Subsequently, gene enrichment analysis of 71 overlapped mRNA regulated by these miRNAs showed that they are mostly associated with hippocampal synaptogenesis, neurogenesis, and axon guidance. Additionally, two high-score compounds, GSK3β inhibitor (SB216763) and dexamethasone, and three drugs (haloperidol, nystatin, paroxetine) were confirmed as potential therapeutic options for ASD.ConclusionThe results of this study may help gain deeper insight into the pathogenesis of the circRNA/miRNA/mRNA regulatory network in ASD, providing potential therapeutic management options.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.