Abstract

The degradation of 1,2-dichloroethane and 2-chloroethanol by Xanthobacter autotrophicus GJ10 proceeds via chloroacetaldehyde, a reactive and potentially toxic intermediate. The organism produced at least three different aldehyde dehydrogenases, of which one is plasmid encoded. Two mutants of strain GJ10, designated GJ10M30 and GJ10M41, could no longer grow on 2-chloroethanol and were found to lack the NAD-dependent aldehyde dehydrogenase that is the predominant protein in wild-type cells growing on 2-chloroethanol. Mutant GJ10M30, selected on the basis of its resistance to 1,2-dibromoethane, also had lost haloalkane dehalogenase activity and Hg resistance, indicating plasmid loss. From a gene bank of strain GJ10, different clones that complemented one of these mutants were isolated. In both transconjugants, the aldehyde dehydrogenase that was absent in the mutants was overexpressed. The enzyme was purified and was a tetrameric protein of 55-kDa subunits. The substrate range was rather broad, with the highest activity measured for acetaldehyde. The K(m) value for chloroacetaldehyde was 160 muM, higher than those for other aldehydes tested. It is concluded that the ability of GJ10 to grow with 2-chloroethanol is due to the high expression level of an aldehyde dehydrogenase with a rather low activity for chloroacetaldehyde.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.