Abstract

Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. ‘Schneiders späte Knorpelkirsche’ trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. ‘Schneiders späte Knorpelkirsche’ cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package (‘chillR’) and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. ‘Payne’) at Davis, California.Electronic supplementary materialThe online version of this article (doi:10.1007/s00484-012-0594-y) contains supplementary material, which is available to authorized users.

Highlights

  • Recent climate change has had substantial impacts on the phenology of temperate plants, with many species showing advances in the timing of flowering in spring (Chmielewski and Rötzer 2001; Fitter and Fitter 2002; Menzel et al 2006; Parmesan and Yohe 2003)

  • Since trees are clearly dormant during this phase and probably accumulate winter chill, we considered the possibility that these phases were effective for chilling accumulation

  • Much higher VIP scores up to 3.0 for this period compared to the chilling phases, with a maximum VIP of 1.4, indicate that temperature variation during the forcing phase has a stronger influence on bloom dates than variation during the chilling phases

Read more

Summary

Introduction

Recent climate change has had substantial impacts on the phenology of temperate plants, with many species showing advances in the timing of flowering in spring (Chmielewski and Rötzer 2001; Fitter and Fitter 2002; Menzel et al 2006; Parmesan and Yohe 2003). This trend is commonly expected to continue into a future that is likely to be considerably warmer than recent decades (IPCC 2007). Since bloom and leaf emergence result from at least partially sequential fulfillments of cold (‘chilling’) and heat (‘forcing’) requirements, later and slower chilling accumulation should lead to later bloom and leafing in spring

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call