Abstract

Isoelectric focusing (IEF) has been used for determination of meat quality with high stability analysis. However, it still suffered from time-consuming, laborious and cost-effective performances, e.g., 3 h protein extraction, more than 10 h rehydration time, 5–12 h focusing time, and imaging of protein band. To overcome these issues, a speedy extraction of colorful proteins was developed by controlling extraction and centrifugation of 0.2g sample within 10 min and 15 min respectively; a rapid analytical method was designed by using a quick array IEF with 25 min rehydration, 7 min focusing, 2 min online scanning and imaging of focused proteins. The total analytical time was well controlled within 1 h, significantly less than the traditional IEF time of 24 h. To demonstrate the proposed method, 18 chickens were classified into three groups, e.g., the normal slaughtering, death treatment underwater, and death with infection via the New castle disease (NDV) virus. The experiments demonstrated that two Mb bands with pI 6.8 and 7.4 were present in slaughtered chickens, while four other bands with pI 6.83, 6.95, 7.09, and 7.13 were observed in abnormal chicken. The additional four proteins bands were identified by western blot (WB) as hemoglobin proteins. Furthermore, array Immobilized pH Gradient (IPG) has high sensitivity (absolute LOD of Mb and Hb were 1.3 ng and 5.5 ng), fair stability (RSD values of 2.32%, 2.27%, and 1.69%) for slaughtered, drowned, NDV-infected chickens for intra-day and (2.94%, 1.66%, and 1.07%) for inter-days, and good recovery (100%, 98.25% and 99.75%). Finally, the developed method could be used for the identification of chicken meat quality with less time and small volume reagents consuming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.