Abstract

Crustaceans sample odorants by a rapid series of flicks of the two flagella composing the distal segments of each of the paired antennules. The lateral flagella contain aesthetasc sensilla that house unimodal chemosensory neurons. Nine types of nonaesthetasc setae with putative chemosensory and mechanosensory functions are distributed on the lateral and medial flagella. Sensory neurons in aesthetascs and nonaesthetasc sensilla terminate in separate regions of the brain, the olfactory lobe, and the lateral antennular neuropil, resulting in two odorant-processing pathways. Distilled water ablation of flagella and excision of specific setae were used to identify chemosensory sensilla mediating antennular flick behavior in Panulirus argus. The flick rates of sham-ablated and ablated or excised lobsters toward squid extract were compared. Complete attenuation of flick response to squid extract occurred as a result of (1) distilled water ablation of lateral flagella, (2) excision of aesthetascs and asymmetric sensilla, and (3) excision of aesthetascs. Distilled water ablation of medial flagella resulted in a mean flick rate 52% of that observed for sham-ablated lobsters toward squid extract. Flicking was unaffected by excision of asymmetric, guard, or companion sensilla. We propose that odorant mediation of flicking behavior requires both the aesthetasc and nonaesthetasc pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.