Abstract

The precise investigation and monitoring of the internal structural change within complex layered systems are crucial, as the emergence of undesirable defects or formation of secondary internal structures significantly exerts a profound influence on the overall properties of the system. We demonstrate an advanced sensing platform utilizing terahertz metasurfaces, allowing chemical detection and precise identification within an acrylic paint layer with a noticeable sensitivity, reaching down to several hundreds of nanometers, in nondestructive and noncontact manners. The identification of solid and mixed paint samples was achieved by analyzing their optical properties, including the refractive index and absorption coefficient. Notably, the presence of internal pore defects within the mixed acrylic paint led to geometric distortions, affecting the state of the overall system. Intriguingly, even in cases where acrylic paint exhibited identical colors perceptible under visible light, distinct discrimination and identification of chemical compositions were successfully proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call