Abstract

Intracellular Ca(2+) signals have been associated with cell polarization and locomotion. As cell motility underlies metastasis, we have sought to better characterize the Ca(2+) signaling events in HT1080 fibrosarcoma cells. We have tested the hypothesis that low voltage-activated (LVA) and nonvoltage-gated (NVG) channels of HT1080 cells participate in dynamic Ca(2+)-signaling events leading to cell migration and invasion. Immunofluorescence microscopy has shown that HT1080 cells express LVA T-type Ca(2+) channels uniformly about the cell periphery, whereas the transient receptor potential-1 (a NVG cation channel) protein appears as punctate spots about a cell's periphery. HT1080 cells exhibit periodic intracellular Ca(2+) spikes. High-speed imaging revealed that the Ca(2+) spikes were composed of a single Ca(2+) wave traveling unidirectionally about the periphery of the cytoplasm in a clockwise fashion (as viewed from basal to apical surfaces). The T-type Ca(2+) channel blocker mibefradil inhibited Ca(2+) spikes and waves on cells and, in parallel, inhibited cell motility and invasion in a dose-dependent manner. Similar changes were noted with the NVG cation channel blockers Gd(3+) and carboxyamido-triazole. The combination of LVA and NVG blockers further reduced Matrigel invasiveness. However, the Ca(2+) channel blockers nicardipine, SKF96365, diltiazem, and verapamil had no effect at appropriate doses. These results indicate that certain LVA and NVG channels regulate HT1080 cell motility. In addition to providing novel information regarding cancer cell motility, we suggest that it may be possible to design drugs that inhibit a key Ca(2+) wave, thereby enhancing the efficacy of emerging therapeutic protocols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.