Abstract

Centaurin-alpha is a 46 kDa in vitro binding protein for the lipid second messenger PtdIns(3,4,5)P3. In this report we have addressed whether centaurin-alpha1, a human homologue of centaurin-alpha, binds PtdIns(3,4,5)P3 in vivo and furthermore, identified a potential physiological function for centaurin-alpha1. Using confocal microscopy of live PC12 cells, transiently transfected with a chimera of green fluorescent protein (GFP) fused to the N-terminus of centaurin-alpha1 (GFP-centaurin-alpha1), we demonstrated the rapid plasma membrane recruitment of cytosolic GFP-centaurin-alpha1 following stimulation with either nerve growth factor or epidermal growth factor. This recruitment was dependent on the centaurin-alpha1 pleckstrin homology domains and was blocked by the PtdIns(4,5)P2 3-kinase (PI 3-kinase) inhibitors wortmannin (100 nM) and LY294002 (50 microM), and also by co-expression with a dominant negative p85. Functionally, we demonstrated that centaurin-alpha1 could complement a yeast strain deficient in the ADP-ribosylation factor (ARF) GTPase-activating protein Gcs1; a complementation that was blocked by mutagenesis of conserved cysteine residues within the ARF GTPase-activating protein analogous domain of centaurin-alpha1. Taken together, our data demonstrated that centaurin-alpha1 could potentially function as an ARF GTPase-activating protein that, on agonist stimulation, was recruited to the plasma membrane possibly through an ability to interact with PtdIns(3,4,5)P3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call