Abstract
In order to begin to analyze the gene products encoded by phage resistance plasmids in lactic streptococci, we identified phage-resistance plasmids by screening resistant strains from commercial starter cultures for the ability to carry out unselected cotransfer, by conjugation, of phage resistance with lactose fermentation ability (lac +). In this fashion, we identified a large (90 kilobases) plasmid, pCLP51R, that encodes the lac + marker, resistance to a lytic phage called LP10G (1pr −), high-frequency conjugal donor ability (hft +), and clumpy growth of host bacteria in broth culture (clu +). The mechanism of resistance conferred by this plasmid appears to involved interference with a step in the phage replication cycle that occurs after the initial attachment of the phage. Polyacrylamide gel electrophoresis of cell surface extracts of isogenic strains, carrying or lacking pCLP51R, combined with immunoblotting analysis, showed that there were several plasmid-related differences in the banding pattern of low molecular weight proteins and that the plasmid resulted in production of several unique antigenic polypeptides in the size range of 15–30 kd, as well as modification of chromosomally encoded antigens to different molecular weight forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.