Abstract

We consider the task of inferring causal relations in brain imaging data with latent confounders. Using a priori knowledge that randomized experimental conditions cannot be effects of brain activity, we derive statistical conditions that are sufficient for establishing a causal relation between two neural processes, even in the presence of latent confounders. We provide an algorithm to test these conditions on empirical data, and illustrate its performance on simulated as well as on experimentally recorded EEG data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.