Abstract

In the present study, we investigated the molecular mechanisms of spontaneous and tumor necrosis factor alpha (TNF-alpha)-mediated apoptosis of human polymorphonuclear neutrophils (PMN). Whereas TNF-alpha-mediated apoptosis was almost absent in the presence of the caspase-8 inhibitor Z-Ac-Ala-Glu-Val-Asp-7-fluoromethyl ketone (Z-AEVD-FMK), the inhibitor had no effect on spontaneous apoptosis, suggesting that spontaneous apoptosis was independent of caspase-8. Subsequently, we identified different isoforms of caspase-10 in human PMN and found high expression of caspase-10/b and/or -10/d and low expression of caspase-10/a and -10/c at the mRNA level. At the protein level, freshly isolated PMN showed high expression of caspase-10/b and -10/d as well as moderate expression of caspase-10/a and -10/c. Upon spontaneous apoptosis, caspase-10/b was down-regulated, which was accompanied by the appearance of a specific 47-kDa caspase-10/b cleavage product and an increased caspase-10 activity. In contrast, no down-regulation of caspase-10/a, -10/c, or -10/d was observed, suggesting that spontaneous apoptosis was associated with a differential activation of caspase-10/b. This was confirmed by the finding that spontaneous apoptosis was inhibited in the presence of Z-Ile-Glu-Thr-Asp (Z-IETD)-FMK, which blocks caspase-10. However, no down-regulation of caspase-10 isoforms was observed in the presence of TNF-alpha, suggesting that caspase-10 was not involved in TNF-alpha-induced apoptosis. Taken together, our study demonstrates that spontaneous and TNF-alpha-mediated apoptosis of PMN have different molecular requirements. Whereas TNF-alpha-mediated apoptosis depends on the activation of caspase-8, spontaneous apoptosis requires the activation of caspase-10/b. This finding may reveal that PMN apoptosis in different (patho-) physiological settings results from distinct molecular mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.