Abstract

Dynamic retinal vessel analysis (DVA) provides a non-invasive way to assess microvascular function in patients and potentially to improve predictions of individual cardiovascular (CV) risk. The aim of our study was to use untargeted machine learning on DVA in order to improve CV mortality prediction and identify corresponding response alterations. We adopted a workflow consisting of noise reduction and extraction of independent components within DVA signals. Predictor performance was assessed in survival random forest models. Applying our technique to the prediction of all-cause mortality in a cohort of 214 haemodialysis patients resulted in the selection of a component which was highly correlated to maximal venous dilation following flicker stimulation (vMax), a previously identified predictor, confirming the validity of our approach. When fitting for CV mortality as the outcome of interest, a combination of three components derived from the arterial signal resulted in a marked improvement in predictive performance. Clustering analysis suggested that these independent components identified groups of patients with substantially higher CV mortality. Our results provide a machine learning workflow to improve the predictive performance of DVA and identify groups of haemodialysis patients at high risk of CV mortality. Our approach may also prove to be promising for DVA signal analysis in other CV disease states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.