Abstract

The prospect of ex vivo functional evaluation of donor hearts is considered. Particularly, the dynamics of a synthetic cardiac afterload model are compared to those of normal physiology. A method for identification of continuous-time transfer functions from sampled data is developed and verified against results from the literature. The method relies on exact gradients and Hessians obtained through automatic differentiation. This also enables straightforward sensitivity analyses. Such analyses reveal that the 4-element Windkessel model is not practically identifiable from representative data while the 3-element model underfits the data. Pressure–volume (PV) loops are therefore suggested as an alternative for comparing afterload dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.