Abstract

Rheumatoid arthritis (RA) is a systemic autoimmune disease whose main symptom is a heightened inflammatory response in synovial tissues. To verify the anti-arthritic activities of Achyranthes aspera and its possible therapy-related factors on the pathogenesis of RA, the saponins in A. aspera root were isolated and identified to treat the collagen-induced arthritis (CIA) rats. Phytochemical analysis isolated and identified methyl caffeate, 25-S-inokosterone, 25-S-inokosterone β-d-glucopyranosyl 3-(O-β-d-glucopyranosyloxy)-oleanolate, and β-d-glucopyranosyl 3-(O-β-d-galactopyranosyl (1→2)(O-β-d-glucopyranosyloxy)-oleanolate as main compounds in the root of A. aspera. Proteomics was performed to determine the differentially expressed proteins in either inflamed or drug-treated synovium of CIA rats. Treatment resulted in dramatically decreased paw swelling, proliferation of inflammatory cells, and bone degradation. Fibrinogen, procollagen, protein disulfide-isomerase A3, and apolipoprotein A-I were all increased in inflamed synovial tissues and were found to decrease when administered drug therapy. Furthermore, Alpha-1-antiproteinase and manganese superoxide dismutase were both increased in drug-treated synovial tissues. The inhibition of RA progression shows that A. aspera is a promising candidate for future treatment of human arthritis. Importantly, the total saponins found within A. aspera are the active component. Finally, autoantigens such as fibrinogen and collagen could act as inducers of RA due to their aggravation of inflammation. Given this, it is possible that the vimentin and PDIA3 could be the candidate biomarkers specific to Achyranthes saponin therapy for rheumatoid arthritis in synovial membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call