Abstract

The selection of sows that are reproductively fit and produce large litters of piglets is imperative for success in the pork industry. Currently, low heritability of reproductive and litter-related traits and unfavourable genetic correlations are slowing the improvement of pig selection efficiency. The integration of biomarkers as a supplement or alternative to the use of genetic markers may permit the optimization and increase of selection protocol efficiency. Metabolite biomarkers are an advantageous class of biomarkers that can facilitate the identification of cellular processes implicated in reproductive condition. Metabolism and metabolic biomarkers have been previously implicated in studies of female mammalian fertility, however a systematic analysis across multiple biofluids in infertile and high reproductive potential phenotypes has not been explored. In the current study, the serum, urinary and salivary metabolomes of infertile (INF) sows and high reproductive potential (HRP) sows with a live litter size ≥ 13 piglets were examined using LC-MS/MS techniques, and a data pipeline was used to highlight possible metabolite reproductive biomarkers discriminating the reproductive groups. The metabolomes of HRP and INF sows were distinct, including significant alterations in amino acid, fatty acid, membrane lipid and steroid hormone metabolism. Carnitines and fatty acid related metabolites were most discriminatory in separating and classifying the HRP and INF sows based on their biofluid metabolome. It appears that urine is a superior biofluid than saliva and serum for potentially predicting the reproductive potential level of a given female pig based on the performance of the resultant biomarker models. This study lays the groundwork for improving gilt and sow selection protocols using metabolomics as a tool for the prediction of reproductive potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.