Abstract
Owing to complex changes in the soil environment, determining cadmium (Cd) phytoavailability is challenging. We devised a soil-wheat system to monitor alterations in soil pH, electrical conductivity (EC), and Cd transformation under various rates of calcium chloride and/or low-molecular-weight organic acids (LMWOAs) addition. The findings indicate that decreasing soil pH value, increasing soil EC value, and Cd transformation affect the phytoextraction of Cd. The exchangeable Cd and transformation of Cd under shifts in soil pH and EC contribute differentially to the phytoextracted Cd. The level of potentially phytoavailable Cd was identified through complete wheat cultivation in which the soil pH decreased by 0.47 unit and soil EC increased by 600-1000 μS cm−1, resembling the concentration of 0.01 M LMWOAs extractable Cd, when transitioning from paddy to dryland soil. Based on considering the phytoextracted Cd as the phytoavailable Cd throughout a complete wheat growth term, the threshold for phytoavailable Cd in soil, ensuring the safety of wheat grain (limit: 0.1 mg kg−1), is determined to be 2.90 μg kg−1. Maintaining control over Cd phytoavailability in soil emerges as the key factor in ensuring the safety of wheat grain cultivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.