Abstract

The development of the CNS in vertebrate embryos involves the generation of different sub-types of neurons and glia in a complex but highly-ordered spatio-temporal manner. Zebrafish are commonly used for exploring the development, plasticity and regeneration of the CNS, and the recent development of reliable protocols for isolating and culturing neural stem/progenitor cells (NSCs/NPCs) from the brain of adult fish now enables the exploration of mechanisms underlying the induction/specification/differentiation of these cells. Here, we refined a protocol to generate proliferating and differentiating neurospheres from the entire brain of adult zebrafish. We demonstrated via RT-qPCR that some isoforms of ip3r, ryr and stim are upregulated/downregulated significantly in differentiating neurospheres, and via immunolabelling that 1,4,5-inositol trisphosphate receptor (IP3R) type-1 and ryanodine receptor (RyR) type-2 are differentially expressed in cells with neuron- or radial glial-like properties. Furthermore, ATP but not caffeine (IP3R and RyR agonists, respectively), induced the generation of Ca2+ transients in cells exhibiting neuron- or glial-like morphology. These results indicate the differential expression of components of the Ca2+-signaling toolkit in proliferating and differentiating cells. Thus, given the complexity of the intact vertebrate brain, neurospheres might be a useful system for exploring neurodegenerative disease diagnosis protocols and drug development using Ca2+ signaling as a read-out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.