Abstract

The neuronal calcium sensors are a family of EF-hand-containing Ca(2+)-binding proteins expressed predominantly in retinal photoreceptors and neurons. One of the family members is neurocalcin delta, the function of which is unknown. As an approach to elucidating the protein interactions made by neurocalcin delta, we have identified brain cytosolic proteins that bind to neurocalcin delta in a Ca(2+)-dependent manner. We used immobilized recombinant myristoylated neurocalcin delta combined with protein identification using MS. We demonstrate a specific interaction with clathrin heavy chain, alpha- and beta-tubulin, and actin. These interactions were dependent upon myristoylation of neurocalcin delta indicating that the N-terminal myristoyl group may be important for protein-protein interactions in addition to membrane association. Direct binding of neurocalcin delta to clathrin, tubulin and actin was confirmed using an overlay assay. These interactions were also demonstrated for endogenous neurocalcin delta by co-immunoprecipitation from rat brain cytosol. When expressed in HeLa cells, neurocalcin delta was cytosolic at resting Ca(2+) levels but translocated to membranes, including a perinuclear compartment (trans-Golgi network) where it co-localized with clathrin, following Ca(2+) elevation. These data suggest the possibility that neurocalcin delta functions in the control of clathrin-coated vesicle traffic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.