Abstract

Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area.

Highlights

  • The Burkholderia genus contains a large number of species, with currently over 60 species identified [1]

  • Burkholderia is a widespread genus of bacteria that contains over 60 species

  • The majority of bacteria identified in this study belonged to the B. ubonensis species and various species were found to inhabit the same environmental sample as the human pathogen, B. pseudomallei

Read more

Summary

Introduction

The Burkholderia genus contains a large number of species, with currently over 60 species identified [1]. Burkholderia includes the clinical and phytopathogenic species whereas Paraburkholderia includes environmental species [2]. This Burkholderia genus occupies a large range of environments including soil, plants, rhizospheres, mammalian hosts, and water [3]. Continued sampling of the soil has uncovered many novel Burkholderia species in recent years [6,7,8,9]. This discovery of novel species across a wide geographic range has caused scientists to begin studying the role of Burkholderia in the soil community, and interactions with co-inhabitants [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call