Abstract

The Geophex GEM-3 sensor was tested at a government test site comprised of 980 1-m squares containing buried landmines and clutter (metallic debris). Electromagnetic (EM) induction spectroscopy (EMIS) was used to discriminate between the landmines and clutter items. Receiver-operator characteristics (ROC) were constructed based on the results of the analysis. Approximately 92% of the landmines were correctly identified as such, with a false alarm rate of 12%. In this report, we present a comparison of our identification results against the ground truth. The EMIS method works well for high-metal mines for which the misfit threshold can be easily established, yielding a correct declaration in all cases without false alarms. For medium-metal mines, even though the misfit differences between the mines and clutter are not as clear as those for the high-metal mines, these mines were still identified at very low false alarm rates with the GEM-3 sensor. The low-metal mines may be discriminated from clutter if they yield reliable signals, but often at a much higher false alarm rate. The primary reason for this is that the EM signals from the low-metal mines are intrinsically weak and thus more subject to distortion by noise. There are several possibilities for improving the low-metal mine identification, including (1) increasing the upper limit of the frequency band to obtain a stronger signal and better defined spectra; (2) decreasing the size of the sensing head to further localize the region of sensitivity of the sensor; (3) displaying the spectral curves and performing the identification in real time to allow operator inspection of the spectral match; and (4) defining a generalized misfit that incorporates signal amplitude and possibly other spectral features such as the quadrature peak.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call