Abstract
There is currently no clinically effective vaccine against leishmaniasis because of poor understanding of the antigens that elicit dominant T cell immunity. Using proteomics and cellular immunology, we identified a dominant naturally processed peptide (PEPCK335-351) derived from Leishmania glycosomal phosphoenolpyruvate carboxykinase (PEPCK). PEPCK was conserved in all pathogenic Leishmania, expressed in glycosomes of promastigotes and amastigotes, and elicited strong CD4(+) T cell responses in infected mice and humans. I-A(b)-PEPCK335-351 tetramer identified protective Leishmania-specific CD4(+) T cells at a clonal level, which comprised ~20% of all Leishmania-reactive CD4(+) T cells at the peak of infection. PEPCK335-351-specific CD4(+) T cells were oligoclonal in their T cell receptor usage, produced polyfunctional cytokines (interleukin-2, interferon-γ, and tumor necrosis factor), and underwent expansion, effector activities, contraction, and stable maintenance after lesion resolution. Vaccination with PEPCK peptide, DNA expressing full-length PEPCK, or rPEPCK induced strong durable cross-species protection in both resistant and susceptible mice. The effectiveness and durability of protection in vaccinated mice support the development of a broadly cross-species protective vaccine against different forms of leishmaniasis by targeting PEPCK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.