Abstract

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. Complete epithelial to mesenchymal transition (EMT) has long been considered as a crucial step for metastasis initiation. It has, however, become apparent that many carcinoma cells can metastasize without complete loss of epithelial traits or with incomplete gain of mesenchymal traits, i.e., partial EMT. Here, we aimed to determine the similarities and differences between complete and partial EMT through over-expression of the EMT-associated transcription factor Slug in different HCC-derived cell lines. Slug over-expressing HCC-derived HepG2 and Huh7 cells were assessed for their EMT, chemo-resistance and stemness features using Western blotting, qRT-PCR, neutral red uptake, doxorubicin accumulation and scratch wound healing assays. We also collected conditioned media from Slug over-expressing HCC cells and analyzed its exosomal protein content for the presence of chemo-resistance and partial EMT markers using MALDI-TOF/TOF and ELISA assays, respectively. We found that Slug over-expression resulted in the induction of both complete and partial EMT in the different HCC-derived cell lines tested. Complete EMT was characterized by downregulation of E-cadherin and upregulation of ZEB2. Partial EMT was characterized by upregulation of E-cadherin and downregulation of vimentin and ZEB2. Interestingly, we found that Slug induced chemo-resistance through downregulation of the ATP binding cassette (ABC) transporter ABCB1 and upregulation of the ABC transporter ABCG2, as well as through expression of CD133, a stemness marker that exhibited a similar expression pattern in cells with either a complete or a partial EMT phenotype. In addition, we found that Slug-mediated partial EMT was associated with enhanced exosomal secretion of post-translationally modified fibronectin 1 (FN1), collagen type II alpha 1 (COL2A1) and native fibrinogen gamma chain (FGG). From our data we conclude that the exosomal proteins identified may be considered as potential non-invasive biomarkers for chemo-resistance and partial EMT in HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call