Abstract

We analyzed data from human genome-wide association studies (GWASs) to identify genetic variants and biological pathways linked to Alzheimer's disease (AD). Ten AD biomarkers (APOE, NECTIN2, APOC1, APOC1P1, TOMM40, RNU4-67P, KRAS, Y_RNA, THORLNC, LINC01956) were found across studies, including six central genetic variants (MAPT (rs242557-A), GRIN2B (rs74442473-G), APOE (rs438811-T), ANK3 (rs438811-T), BIN1 (rs744373-G), and BDNF (rs7481773-A)). ANK3 (rs438811-T) and GRIN2B (rs74442473-G) were essential hub biomarkers for amyloid plaques, while MAPT (rs242557-A) and BIN1 (rs744373-G) were crucial for neurofibrillary tangles (NFTs). Higher-risk AD biomarkers were associated with increased protein-lipid complex formation, while lower-risk AD biomarkers were correlated with improved synaptic function. Six essential miRNAs (hsa-miR-124–3p, 15a-5p, 16–5p, 204–5p, 520g-3p, 520h) and three transcription factors (ZMAT4, ZBED6, FOXG1) emerged as possible candidates to reveal the genetic differences that lead to amyloid plaques, NFTs, and ultimately AD. These findings serve as a basis for potential AD treatments and offer new avenues for therapeutic approaches to directly target the genetic variations and processes associated with the disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call