Abstract

Most of the hematophagous insects act as disease vectors, including Aedes aegypti, responsible for transmitting some of the most critical arboviruses globally, such as Dengue. The use of repellents based on natural products is a promising alternative for personal protection compared to industrial chemical repellents. In this study, the repellent effect of essential oils extracted from Lippia thymoides, Lippia alba, Cymbopogon winterianus, and Eucalyptus globulus leaves was evaluated. Essential oils used showed repellent activity against Ae. aegypti in laboratory bioassays, obtaining protection rates above 70 % from 3.75 mg/mL and higher concentration for all analyzed oils. GC/MS identified 57 constituents, which were used in the ligand-based pharmacophore model to expose compounds with requirements for repellents that modulate mosquitoes behavior through odorant-binding protein 1 Ae. aegypti. Ligand-based pharmacophore model approach results suggested that repellent activity from C. winterianus, L. alba, and L. thymoides essential oils' metabolites is related to Citronelal (QFIT=26.77), Citronelol (QFIT=11.29), Citronelol acetate (QFIT=52.22) and Geranil acetate (QFIT=10.28) with synergistic or individual activity. E. globulus essential oil's repellent activity is associated with Ledol (0.94 %; QFIT=41.95). Molecular docking was applied to understand the binding mode and affinity of the essential oils' data set at the protein binding site. According to molecular docking, Citronelol (ChemPLP=60.98) and geranyl acetate (ChemPLP=60.55) were the best-classified compounds compared to the others and they can be explored to develop new repellents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call