Abstract
Spondylocostal dysostosis (SCD), a condition characterized by multiple segmentation defects of the vertebrae and rib malformations, is caused by bi-allelic variants in one of the genes involved in the Notch signaling pathway that tunes the "segmentation clock" of somitogenesis: DLL3, HES7, LFNG, MESP2, RIPPLY2, and TBX6. To date, seven individuals with LFNG variants have been reported in the literature. In this study we describe two newborns and one fetus with SCD, who were found by trio-based exome sequencing (trio-ES) to carry homozygous (c.822-5C>T) or compound heterozygous (c.[863dup];[1063G>A]) and (c.[521G>T];[890T>G]) variants in LFNG. Notably, the c.822-5C>T change, affecting the polypyrimidine tract of intron 5, is the first non-coding variant reported in LFNG. This study further refines the clinical and molecular features of spondylocostal dysostosis 3 and adds to the numerous investigations supporting the usefulness of trio-ES approach in prenatal and neonatal settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.