Abstract

Alzheimer's disease is a neurodegenerative disorder characterized by the extracellular deposition in the brain of amyloid beta-peptide (A beta), presumed to play a pathogenic role. However, the precise molecular mechanisms of its neurotoxicity are not fully understood. Recent studies have suggested that it may exert its toxic effect via activation of transcription factors. We investigated A beta-responsive genes in human preneuron NT2 cells, at early stages of A beta (25-35) exposure, by RNA differential display. A beta induced the expression of (i) the growth arrest and DNA damage-inducible gene (gadd45) implicated in the DNA excision-repair process; (ii) a stress-signaling kinase gene encoding the mitogen-activated protein kinase/Erk kinase kinase-1 (MEKK1); (iii) a new growth factor-inducible immediate-early gene, CYR61, the product of which functions as an extracellular matrix signaling molecule; (iv) other immediate-early genes, such as c-jun and c-fos; (v) the gene encoding the basic fibroblast growth factor (bFGF); (vi) a gene encoding a constituent of the mitochondrial pyruvate dehydrogenase complex, the dihydrolipoamide dehydrogenase-binding protein (E3-BP); and (vii) an unidentified human gene (KIAA0099). A beta not only activates but also respresses genes: (i) the gene encoding "hinge" protein, a subunit of the mitochondrial cytochrome-c reductase and (ii) the SRp55 gene encoding a splicing factor involved in constitutive pre-mRNA splicing and alternative splice site selection. Our results underscored A beta-responsive genes that play key roles in the response (damage/recovery) of neuron cells to A beta exposure. In particular, the strong upregulation of gadd45, indicating DNA damage, was detected early in A beta cytotoxicity. This suggests that DNA strand breaks occurred rapidly in cells exposed to A beta, which may be a critical event in A beta neurotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.