Abstract
The reliable identification of dynamic parameters in mechanical systems remains a big challenge, in particular for nonlinear systems. There is not a single mathematical model encompassing the universe of most systems. From a practical point of view, the identification of system parameters depends on the measurement data as well as on the reference model. This paper presents a novel method for identifying the dynamic parameters of a gas bearing, whose force coefficients are strong functions of frequency. The method is based on the analysis of the phase diagram with the model assuming a mass-damper-spring system with time-dependent force coefficients. The phase diagram could be implemented electronically for on line monitoring and ready fault detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.