Abstract
YidC is a member of the YidC/Oxa1/Alb3 protein family that is crucial for membrane protein biogenesis in the bacterial plasma membrane. While YidC facilitates the folding and complex assembly of membrane proteins along with the Sec translocon, it also functions as a Sec-independent membrane protein insertase in the YidC-only pathway. However, little is known about how membrane proteins are recognized and sorted by these pathways, especially in Gram-positive bacteria, for which only a small number of YidC substrates have been identified to date. In this study, we aimed to identify Bacillus subtilis membrane proteins whose membrane insertion depends on SpoIIIJ, the primary YidC homolog in B. subtilis. We took advantage of the translation arrest sequence of MifM, which can monitor YidC-dependent membrane insertion. Our systematic screening identified eight membrane proteins as candidate SpoIIIJ substrates. Results of our genetic study also suggest that the conserved arginine in the hydrophilic groove of SpoIIIJ is crucial for the membrane insertion of the substrates identified here. However, in contrast to MifM, a previously identified YidC substrate, the importance of the negatively charged residue on the substrates for membrane insertion varied depending on the substrate. These results suggest that B. subtilis YidC uses substrate-specific interactions to facilitate membrane insertion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.