Abstract
ObjectiveTo classify children with autism spectrum disorder (ASD) and typical development (TD) using short-term spontaneous hemodynamic fluctuations and to explore the abnormality of inferior frontal gyrus and temporal lobe in ASD. Methods25 ASD children and 22 TD children were measured with functional near-infrared spectroscopy located on the inferior frontal gyrus and temporal lobe. To extract features used to classify ASD and TD, a multi-layer neural network was applied, combining with a three-layer convolutional neural network, a layer of long and short-term memory network (LSTM) and a layer of LSTM with Attention mechanism. In order to shorten the time of data collection and get more information from limited samples, a sliding window with 3.5 s width was utilized after comparisons, and numerous short (3.5 s) fNIRS time series were then obtained and used as the input of the multi-layer neural network. ResultsA good classification between ASD and TD was obtained with considerably high accuracy by using a multi-layer neural network in different brain regions, especially in the left temporal lobe, where sensitivity of 90.6% and specificity of 97.5% achieved. ConclusionsThe “CLAttention” multi-layer neural network has the potential to excavate more meaningful features to distinguish between ASD and TD. Moreover, the temporal lobe may be worth further study. SignificanceThe findings in this study may have implications for rapid diagnosis of children with ASD and provide a new perspective for future medical diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.